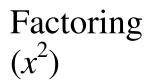


Factoring (Perfect Square) Factoring (x^{2}) 2. Factoring (ax^2) Quadratic Formula Taking the Square Root

1. Fold the paper. Cut along the lines.

©2009, Dr. Jennifer L. Bell, LaGrange High School, LaGrange, Georgia

Factoring (Perfect Square)


Factoring (ax^2)

Quadratic Formula

Taking the Square Root

S	$x^2 - 64 = 0$	
V i	$x^2 + 7x + 10 = 0$	
n		
g	$5x^2 + 8x + 3 = 0$	
Q U		
a d r a	$2x^2 + 3x + 4 = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
t i C	$x^2 - 20 = 0$	$(x-5)^2 = 81$
S		

Factoring (Perfect Square)

Factoring (ax^2)

Quadratic Formula

Completing the Square

S $x^2 - 64 = 0$	
• $x^2 + 7x + 10 = 0$	
n	
$5x^2 + 8x + 3 = 0$	
Q U	
a $2x^2 + 3x + 4 = 0$ d	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
a t $x^2 + 6x - 8 = 0$ i	
C S	